# ENCAPSULATION PROCESSING AND MANUFACTURING YIELD ANALYSIS

SPRINGBORN LABORATORIES, INC.

P. Willis

## Goals

- UNDERSTAND THE RELATIONSHIPS BETWEEN:
  - FORMULATION VARIABLES
  - PROCESS VARIABLES
- DEFINE CONDITIONS REQUIRED FOR OPTIMUM PERFORMANCE
- RELATE TO MODULE RELIABILITY
- PREDICT MANUFACTURING YIELD
- PROVIDE DOCUMENTATION TO INDUSTRY

PRECEDING PAGE BLANK NOT FIL

I WANTED TO THE TOTAL TO

*z,* [

## **Material Variables**

#### LAMINATION POTTANTS

- ETHYLENE/VINYL ACETATE (EVA)
- ETHYLENE/NETHYL ACRYLATE (EMA)

#### CASTING POTTANTS

ALIPHATIC POLYURETHANE (PU)

#### ADHESIVES/PRIMERS

THREE BASIC PRIMER SYSTEMS

#### COVER FILMS

TEDLAR, ACYRLICS, FEP

#### FORMULATION VARIABLES:

#### TYPE AND AMOUNT OF:

- CURING AGENTS (PEROXIDES)
- ANTIOXIDANTS
- ULTRAVIOLET SCREENERS
- ULTRAVIOLET STABILIZERS (HALS)
- SELF PRIMING AGENTS

#### STORAGE CONDITIONS:

• TIME, TEMPERATURE, HUMIDITY, LIGHT AIR EXPOSURE

#### QUALITY CONTROL:

- DETERMINE ANLYTICAL METHODS TO VERIFY
   COMPOSITION
- PUBLISH QC SPECIFICATIONS FOR MATERIAL CERTIFICATION

• . • • •

A STANK LAND THE STANK OF THE S

## PROCESS DEVELOPMENT

## **Process Variables**

(VACUUM BAG LAMINATION )

- AMBIENT CONDITIONS:
   TEMPERATURE
   HUMIDITY
   BAROMETRIC PRESSURE
- VACUUM PRESSURE (INITIAL) AND TIME
   OF EVACUATION
- TEMPERATURE - RATE OF RISE
- TEMPERATURE - ULTIMATE
- DWELL TIME, AT TEMPERATURE
- RATE OF COOLING
- TIME/TEMPERATURE/PRESSURE INTER-RELATIONSHIP

(CASTING LIQUID SYSTEMS)

ABOVE VARIABLES, PLUS:

- 2 COMPONENT MIX TIME
- DEGASSING PRESSURE
- PUMP AND FILL TIMES
- MIX UNIFORMITY
- GEL TIME

the property of the state of the

## **Process Equipment**

## EXPERIMENTAL LAMINATOR





- MICROPROCESSOR CONTROLLED EXPERIMENTAL LAMINATOR CONSTRUCTED
- STUDIES STARTED ON PROCESSING PROFILES
  - RATE OF HEATING ( HOW SLOW, HOW FAST ? )
    - VACUUM TIMING
    - RATE OF COOLING

1 - 1 - 1 - 1

# Quality and Performance Criteria

HETHOD.

- PREPARE TEST MODULES AND/OR OTHER TEST SPECIMENS WITH CHANGE IN SIGNIFICANT VARIABLE(S)
- DETERMINE THE EFFECT

| COTIPONENT          | CRITERION         | TEST                         |  |
|---------------------|-------------------|------------------------------|--|
| POTTANT             | ADEQUATE CURE     | PERCENT GEL<br>THERMAL CREEP |  |
|                     | TRAPPED BUBBLES   | VISUAL                       |  |
|                     | DISCOLORATION     | VISUAL                       |  |
| CELLS               | BREAKAGE          | VISUAL, RESISTANCE           |  |
|                     | INTERCONNECT      | RESISTANCE                   |  |
|                     | REGISTRATION      | VISUAL                       |  |
| COVER FILMS         | TEARS/PUNCTURES   | VISUAL                       |  |
|                     | WARPING/SHRINKAGE | VISUAL                       |  |
| GLASS (SUPERSTRATE) | FRACTURE          | VISUAL                       |  |
| ADHESION            | BOND STRENGTH     | PEEL TEST                    |  |
|                     | ENDURANCE         | WATER SCAK (50°C)            |  |
|                     |                   |                              |  |

#### NEED TO DECIDE ON:

- STANDARD TEST SPECIMEN(S)
- STANDARD TEST PROTOCOL
- UNIFORM DATA SETS



TOWN FOR THE

## **Data Analysis**

- STATISTICAL ANALYSIS COMPLICATED BY LACK OF UNIFORMITY IN DATA TYPE
- TWO TYPES OF DATA:

DISCRETE (PASS/FAIL)

CELL FRACTURE

INTERCONNECT BREAKAGE

TRAPPED BUBBLES

THERMAL CREEP

GLASS FRACTURE

CONTINUOUS

GEL CONTENT

PEEL STRENGTH

STABILIZER LOSS

#### FOR CONTINUOUS DATA TYPES:

- TWG LEVEL FACTORIAL EXPERIMENTS
   (MOST INFORMATION, FEWEST EXPERIMENTS )
- NO. EXPERIMENTS =  $2^{K}$ , K = NO, VARIABLES
- DETERMINES EFFECT OF SINGLE VARIABLE AT TWO LEVELS
- DETERMINES FACTOR INTERACTIONS (SEVERAL VARIABLES)
- PERMITS RANKING OF VARIABLES ACCURDING TO MAGNITUDE OF EFFECT
- LINEAR ANALYSIS POSSIBLE FOR SUBSEQUENT PREDICTIVE CAPABILITY

#### FOR DISCRETE DATA TYPES:

- DETERMINE "X SUCCESSES IN N TRIALS" FOR SUITABLY LARGE SAMPLE
- SCATTER PLOT FOR FIRST ESTIMATE OF ACCEPTABLE PRO-CESSING RANGE
- BINOMINAL DESTRIBUTION -DETERMINE PROBABILITY OF FAILURE

#### IN GENERAL:

- 1. DETERMINE THE DOMINANT FAILURE MODE
- 2. DETERMINE VARIABLE(s) RESPONSIBLE
- 3. DETERMINE EXPERIMENTAL CONDITIONS THAT RESULT IN A RANGE OF FAILURES
- 4. DETERMINE THE MEAN AND STANDARD DEVIATION OF THE DISTRIBUTION
- 5. USE PROBABILITY DISTRIBUTION FUNCTION TO CALCULATE PROBABLE FAILURE AT OTHER STRESS LEVELS

# Manufacturing Practice: Discrete Variables

- PREPARE GRAPHICAL INTERPRETATION OF DATA
- Desermine " Tolerable Failure " LEVEL
- DEFINE BOUNDRY CONDITIONS FOR DEFECT-FREE MANUFACTURING ( FIRST ESTIMATE )

EXAMPLE: CELL BREAKAGE



# Manufacturing Practice: Continuous Variables

- GRAPHICAL PRESENTATION ALSO GOOD FOR CONTINUOUS VARIABLES
- PROVIDES BOUNDRIES FOR PROCESS/FORMULATION VARIABLES BASED ON CRITERIA OF ACCEPTABILITY
- EASILY USED IN MANUFACTURING PRACTICE

EXAMPLE: PERCENT GEL (DEGREE OF CURE)



# Formulation Sensitivity

- UV SCREENERS AND OTHER STABILIZERS SLOW DOWN CURE RATE SLIGHTLY. NO ENORHOUS DIFFERENCE BETWEEN TYPES
- ANTIOXIDANTS CAN HAVE MAJOR EFFECT ON CURE, NOT USED/UNNECESSARY

CURE VERSUS PEROXIDE CONTENT (TIME TO GEL CUNTENT>65%, MINUTES)

|                |       | EVA 9918  | _    |       |
|----------------|-------|-----------|------|-------|
|                | 130°  | 140°      | 150° | _160° |
| LUPERSOL 101:  |       |           |      |       |
| 1.5%           | NC    | 20        | 10   | 5     |
| 0.5%           | NC    | 30        | 20   | 10    |
|                |       | EVA 15295 | 5_   |       |
| LUPERSOL TBEC: |       |           |      |       |
| 1.5%           | 8     | <5        | 3    | 1     |
| 0.5%           | NC    | 10        | 5    | <5    |
|                | (NC = | N: CURE)  |      |       |

- ONE THIRD THE STANDARD PEROXIDE CONCENTRATION DOUBLES THE REQUIRED TIME
- EVA FORMULATIONS NOT SENSITIVE TO MINOR VARIATIONS ON PEROXIDE CONTENT



# **Process Sensitivity**

#### EVA STORAGE / AIR EXPOSURE

|                     | EVA NUMBER                     |                                                      |  |
|---------------------|--------------------------------|------------------------------------------------------|--|
|                     | 9918                           | 15295                                                |  |
| PEROXIDE:           | LUPERSOL 101                   | LUPERSOL TBEC                                        |  |
| CURE<br>CONDITIONS: | 150° / 20 MIN<br>140° / 20 MIN | 150 <sup>0</sup> / 5 MIN<br>140 <sup>0</sup> / 5 MIN |  |

| AIR EXPOSURE | GEL CONTENTS: |             |  |
|--------------|---------------|-------------|--|
| CONTROL, O   | 80 Z          | 93 %        |  |
| -            | 64 %          | 91 %        |  |
| 24 HOURS     | 82 <b>%</b>   | 85 %        |  |
|              | 71 %          | 78 %        |  |
| 48 HOURS     | 78 <b>%</b>   | 81 %        |  |
|              | 0 %           | 72 %        |  |
| 72 HOURS     | 70 <b>%</b>   | 83 %        |  |
|              | 0 %           | 82 <b>%</b> |  |
| 168 HOURS    | 0 %           | 70 %        |  |
| (ONE WEEK)   | 0 %           | 0 %         |  |

- EVA FORMULATIONS STRONGLY AFFECTED BY AIR EXPOSURE.
   AIR EXPOSURE.
- FORMULATION WITH TBEC PEROXIDE MUCH LESS AIR SENSITIVE
- EVA STORED IN ROLL FORM APPEARS TO HAVE LONG STORAGE LIFE
- CUT EVA SHEET ONLY BEFORE USE, DISCARD FIRST WRAP OF ROLL

# JPL Process Sensitivity Analysis



The transfer of the state of the same

## Conclusions

- EVA FORMULATIONS RELATIVELY INSENSITIVE TO QUANTITY OF PEROXIDE BUT <u>VERY</u> SENSI-TIVE TO AIR EXPOSURE
- UNWRAP/CUT EVA JUST BEFORE MODULE MANU-FACTURING - LIMIT AIR EXPOSURE

## **Accomplishments**

- ANALYTICAL METHODS DEVELOPED FOR PEROXIDE CONTENT
- ISICROPROCESSOR CONTROLLED EXPERIMENTAL LAMINATOR CONSTRUCTED
- EXPERIMENTAL TEST METHODOLOGY DEVELOPED (FIRST CUT)
- REVISED EVA PRODUCT BROCHURE AVAILABLE INCLUDES "TROUBLE SHOOTING "SECTION

## **Future Work**

- DETERMINE DOMINANT FAILURE MODES
- CONVERT DATA TO PRACTICAL ENGINEERING FORMAT
- RELATE DATA TO MANUFACTURING YIELD
  - ASSIGN PROBABILITY OF FAILURE
  - NORMAL DISTRIBUTION (?)
  - WEIBUL (?)

